Chemical modification of yeast 3-phosphoglycerate kinase.
نویسندگان
چکیده
Sulfhydryl reagents, as well as mild hydrogen peroxide oxidation, do not inhibit the activity of yeast phosphoglycerate kinase, indicating that the single thiol group and 3 methionine residues present in the enzyme are not essential for activity. Nitration of phosphoglycerate kinase by tetranitromethane inhibits the enzyme by reaction with a single tyrosine residue. Substrates provide partial protection against inactivation by nitration. Circular dichroism spectra indicate that no conformational changes occur upon nitration. However, perturbation of the microenvironment surrounding the aromatic amino acid residues, particularly tyrosine, was observed. The same perturbation was observed on addition of the substrate 3-phosphoglycerate kinase to native phosphoglycerate kinase. The role of lysine in the action of yeast phosphoglycerate kinase has been studied by modification with O-methylisourea, 2-methoxy-5-nitrotropone, and pyridoxal phosphate. Guanidination shows that there are lysines essential for phosphoglycerate kinase; extrapolation to zero activity indicates that there are three essential lysines as judged by nitrotroponylation and three essential lysines when the enzyme is reacted with pyridoxal phosphate. Substrates afford partial protection and extrapolation to total protection indicates that up to three lysines are protected by MgITP and one lysine by 3-phosphoglycerate. Spectrofluorescence and optical rotatory dispersion measurements show that there is no detectable conformational change for the guanidinated phosphoglycerate kinase and that there are slight changes in the spectra suggesting that there may be slight conformational changes for the nitrotroponylated and the pyridoxal phosphate-modified enzymes.
منابع مشابه
Affinity labeling of nucleotide-binding sites on kinases and dehydrogenases by pyridoxal 5'-diphospho-5'-adenosine.
A new adenine nucleotide analog, [3H]pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP), has been synthesized. The effectiveness of PLP-AMP as an affinity probe has been tested using a number of nucleotide-binding enzymes. In comparison to reaction with pyridoxal 5'-phosphate, PLP-AMP binds more tightly and exhibits greater specificity of labeling for most enzymes tested. PLP-AMP is a very potent in...
متن کاملIsolation and characterization of Saccharomyces cerevisiae glycolytic pathway mutants.
Yeast strains carrying recessive mutations representing four different loci that cause defects in pyruvate kinase, pyruvate decarboxylase, 3-phosphoglycerate kinase, and 3-phosphoglycerate mutase were isolated and partially characterized. Cells carrying these mutations were unable to use glucose as a carbon source as measured in turbidimetric growth experiments. Tetrad analysis indicated that t...
متن کاملSignificant quantities of the glycolytic enzyme phosphoglycerate mutase are present in the cell wall of yeast Saccharomyces cerevisiae.
NaOH was used to extract proteins from the cell walls of the yeast Saccharomyces cerevisiae. This treatment was shown not to disrupt yeast cells, as NaOH-extracted cells displayed a normal morphology upon electron microscopy. Moreover, extracted and untreated cells had qualitatively similar protein contents upon disruption. When yeast was grown in the presence of 1 M mannitol, two proteins were...
متن کاملYeast phosphoglycerate kinase: investigation of catalytic function by site-directed mutagenesis.
A salt link buried in the domain interface of phosphoglycerate kinase has been implicated as being important in controlling the conformational transition from the open, or substrate-binding, to the closed, or catalytically competent, form of the enzyme. The residues contributing to the salt link are remote from the active site, but are connected to the substrate-binding sites through strands of...
متن کاملSubstrate binding closes the cleft between the domains of yeast phosphoglycerate kinase.
Using small angle x-ray scattering from solutions of yeast phosphoglycerate kinase, we have measured the radius of gyration of the enzyme both in the presence and in the abscence of ligands. We find that the radius of gyration decreases by 1.09 +/- 0.34 A upon binding both substrates MgATP and 3-phosphoglycerate to form the ternary complex. Smaller decreases, at the limit of the precision of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 250 4 شماره
صفحات -
تاریخ انتشار 1975